Cdc42-induced actin filaments are protected from capping protein
نویسندگان
چکیده
Each actin filament has a pointed and a barbed end, however, filament elongation occurs primarily at the barbed end. Capping proteins, by binding to the barbed end, can terminate this elongation. The rate of capping depends on the concentration of capping protein [1], and thus, if capping terminates elongation, the length of filaments should vary inversely with the concentration of capping protein. In cell extracts, such as those derived from neutrophils, new actin filaments can be nucleated by addition of GTPgammaS-activated Cdc42 (a small GTPase of the Rho family). To determine whether elongation of these filaments is terminated by capping, we manipulated the concentration of capping protein, the major calcium-independent capping protein in neutrophils, and observed the effects on filament lengths. Depletion of 70% of the capping protein from extracts increased the mean length of filaments elongated from spectrin-actin seeds (very short actin filaments with free barbed ends) but did not increase the mean length of filaments induced by Cdc42. Furthermore, doubling the concentration of capping protein in cell extracts by adding pure capping protein did not decrease the mean length of filaments induced by Cdc42. These results suggest that the barbed ends of Cdc42-induced filaments are protected from capping by capping protein.
منابع مشابه
Mechanism of Cdc42-induced Actin Polymerization in Neutrophil Extracts
Cdc42, activated with GTPgammaS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell superna...
متن کاملThe Rho Family GTPase Rif Induces Filopodia through mDia2
Eukaryotic cells produce a variety of specialized actin-rich surface protrusions. These include filopodia-thin, highly dynamic projections that help cells to sense their external environment. Filopodia consist of parallel filaments of actin, bundled by actin crosslinking proteins. The filaments are oriented with their rapidly growing "barbed" ends at the protruding tip and their slowly growing ...
متن کاملTreponema denticola Major Outer Sheath Protein Induces Actin Assembly at Free Barbed Ends by a PIP2-Dependent Uncapping Mechanism in Fibroblasts
The major outer sheath protein (Msp) of Treponema denticola perturbs actin dynamics in fibroblasts by inducing actin reorganization, including subcortical actin filament assembly, leading to defective calcium flux, diminished integrin engagement of collagen, and retarded cell migration. Yet, its mechanisms of action are unknown. We challenged Rat-2 fibroblasts with enriched native Msp. Msp acti...
متن کاملRegulation of cortical actin cytoskeleton assembly during polarized cell growth in budding yeast
We have established an in vitro assay for assembly of the cortical actin cytoskeleton of budding yeast cells. After permeabilization of yeast by a novel procedure designed to maintain the spatial organization of cellular constituents, exogenously added fluorescently labeled actin monomers assemble into distinct structures in a pattern that is similar to the cortical actin distribution in vivo. ...
متن کاملCapping Protein Terminates but Does Not Initiate Chemoattractant-induced Actin Assembly in Dictyostelium
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 9 شماره
صفحات -
تاریخ انتشار 1999